distance learning online education dx logo
online education line home 
about us 
contact us 
 
 
online degree granting university by distance learning
 

 About the OU

 Course fees

 Course handbook

 Subject outlines

 University website

 
 
Enquire into this online degree now   Enquire Now 
 
 

BSc (Honours) Mathematics

From economic policy to scientific advancement, mathematics is indispensable to modern life. This degree course will give you a good understanding of pure and applied mathematics at an advanced level, and enhance your career prospects in a huge array of fields. You'll cover wide range of topics, from the abstract to how mathematics is used in the real world, and develop a secure understanding of mathematical concepts and approaches. Through your study of the BSc (Honours) Mathematics you'll gain:

  • a broad understanding of, and practice with, basic ideas of modern pure mathematics (including analysis, linear algebra and group theory)
  • a broad understanding of, and practice in using, basic tools of applied mathematics (including mathematical methods, mathematical modelling and numerical analysis)
  • an appreciation of the role and construction of rigorous proof in mathematics
  • familiarity with the use of mathematical software
  • experience of communicating mathematical arguments and conclusions.

Study Mode

Online Education, Distance Learning & External study modes available

Key facts

Code: Q31 Made up of: 360 credits
Entry
Requirements:

There are no formal entry requirements to study this degree, but we offer two routes through the course, depending on your experience and confidence with mathematics.

Fees: Our fees depend on where you are ordinarily resident. We have a range of funding options to help you with payment. When you apply to study we will tell you the fee and funding options that are available to you. Before you apply you can read What you can expect to pay.

Career relevance and employability

Mathematics lies at the heart of many activities, from everyday tasks, problem solving and decision making, to the formulation of economic policies and advancement of science and technology. A qualification in mathematics will always enhance your career prospects. Mathematical knowledge is much sought after by a wide variety of employers, as shown by the Government's initiative to increase participation in the strategically important STEM subjects (science, technology, engineering and mathematics). By studying this degree course you'll be equipped with skills and knowledge required for jobs in fields such as education, engineering, business, finance, and accountancy. It will contribute to you gaining Chartered Mathematician status, which is awarded by the Institute of Mathematics and its Applications (IMA). You can view or download our Recognition leaflet 3.6 Institute of Mathematics and its Application for further information.

It is widely accepted that a degree in mathematics particularly enhances the following transferable and much sought-after skills:

  • Communicating mathematical ideas clearly and succinctly
  • Explaining mathematical ideas to others
  • Understanding complex mathematical texts
  • Working with abstract concepts
  • Thinking logically
  • Expressing problems in mathematical language
  • Constructing logical arguments
  • Working on open-ended problems
  • Finding solutions to problems
  • Interpreting mathematical results in real-world terms
  • Using relevant professional software.

There's more information about how OU study can improve your employability in the OU's Employability Statement from our Careers Advisory Service. You can also read or download our publication OU study and your career and look at our subject pages to find out about career opportunities.

Educational aims

This degree introduces you to mathematical concepts and thinking, and helps you to develop a mathematical approach. Our aims are that you should achieve:

  • familiarity with the essential ideas of pure mathematics (particularly analysis, linear algebra and group theory), with the opportunity also to become acquainted with some of: number theory, mathematical logic, combinatorics, geometry, topology
  • ability to apply the main tools of applied mathematics (particularly Newtonian mechanics, differential equations, vector calculus, numerical methods and linear algebra), with the opportunity also to meet some of: advanced calculus, fluid mechanics, advanced numerical analysis
  • ability to model real-world situations and to use mathematics to help develop solutions to practical problems
  • ability to follow complex mathematical arguments and to develop mathematical arguments of your own
  • experience of study of mathematics in some breadth and depth
  • understanding of some of the more advanced ideas within mathematics
  • development of your capability for working with abstract concepts
  • ability to communicate mathematical ideas, proofs and conclusions effectively
  • ability to work with others on mathematical modelling problems and their validation
  • skills necessary to use mathematics in employment, or to progress to further study of mathematics
  • ability to use a modern mathematical computer software package in pursuance of the above aims.

You will also have the opportunity to develop knowledge of, and the ability to apply, some important concepts and techniques of Statistics.

Learning outcomes

The learning outcomes of this degree (of which there is considerable overlap between the last two) are described in four areas:

Knowledge and understanding

On completion of this degree, you will:

  • know and understand the elements of linear algebra, analysis and group theory
  • know and understand the concepts behind the methods of Newtonian mechanics, differential equations, vector calculus, linear algebra and numerical analysis, and be able to model real-world situations using these concepts.

The degree programme is flexible, offering you also a considerable choice of mathematical topics at Level 3. You will further develop your mathematical knowledge and understanding in the topics you choose to study. Currently the following topics are available:

  • pure mathematics: number theory, combinatorics, geometry, topology, mathematical logic, further group theory and analysis
  • applied mathematics: advanced calculus, fluid mechanics, advanced numerical analysis.

There is the possibility of limited study in related areas, according to your interests: physics and/or statistics up to Level 3, or the history of mathematics at Level 2.

Depending on your Level 3 study, you will be able to apply your knowledge and understanding to practical problems or to further advancing your understanding of mathematics. (For example, after completion of this degree you may wish to consider going on to the Mathematics MSc programme.)

The topics may change from time to time, and if they do they will be replaced by others at a similar level and providing similar learning outcomes.

Cognitive skills

On completion of this degree, you will have acquired:

  • ability in mathematical manipulation and calculation, using a computer package when appropriate
  • ability to assemble relevant information for mathematical arguments and proofs
  • ability to understand and assess mathematical proofs and construct appropriate mathematical proofs of your own
    ability to reason with abstract concepts
  • judgement in selecting and applying a wide range of mathematical tools and techniques
  • qualitative and quantitative problem-solving skills.

Practical and/or professional skills

On completion of this degree, you will be able to demonstrate the following skills:

Application: apply mathematical concepts, principles and methods

Problem solving: analyse and evaluate problems (both theoretical and practical) and plan strategies for their solution

Information technology: use information technology with confidence to acquire and present mathematical knowledge, to model and solve practical problems and to develop mathematical insight

Communication: communicate relevant information accurately and effectively, using a form, structure and style that suit the purpose (including written and face-to-face presentation)

Collaboration: work collaboratively with others on projects requiring mathematical knowledge and input

Independence: be an independent learner, able to acquire further knowledge with little guidance or support.

Key skills

On completion of the degree, you will be able to demonstrate the following key skills:

Communication

  • read and/or listen to documents and discussions having mathematical content, with an appropriate level of understanding
  • communicate information having mathematical content accurately and effectively, using a form, structure and style that suits the purpose (including face-to-face presentation)
  • work collaboratively with others on projects requiring mathematical knowledge and input.

Application of number

  • exhibit a high level of numeracy, appropriate to a Mathematics graduate.

Information technology

  • use information technology with confidence to acquire and present mathematical knowledge, to model and solve practical problems and to develop mathematical insight.

Learning how to learn

  • be an independent learner, able to acquire further knowledge with little guidance or support.

Copyright Open University UK

 Search for a course
 Related courses